



# VII-041 - DIAGNÓSTICO DE SALUBRIDADE AMBIENTAL EM COMUNIDADES RURAIS DO ALTO PARAOPEBA, REGIÃO CENTRAL DE MINAS GERAIS

Raphael de Vicq<sup>(1)</sup>, Hilderaldo Martins Lima<sup>(2)</sup>, Francielly Dulce Campos<sup>(2)</sup>, Débora Aparecida Pereira Rodrigues<sup>(2)</sup>

(1). Mestre em Saneamento e Meio Ambiente pela Universidade Federal de Ouro Preto (UFOP). Professor de Engenharia Ambiental da Faculdade Santa Rita (Conselheiro Lafaiete-MG). Doutorando em Conservação dos Recursos Naturais Depto de Geologia - Escola de Minas - UFOP

(2) Alunos do Curso de Engenharia Ambiental da Faculdade Santa Rita - FaSaR

**Endereço:** Faculdade Santa Rita – FaSaR – Estrada Real Conselheiro Lafaiete-Ouro Branco km 2 – Conselheito Lafaiete – MG - CEP 36.400.000. Tel: (31) 3062-2016- e-mail: raphael.vicq@fasar.com.br

#### **RESUMO**

O principal objetivo deste trabalho foi analisar e quantificar as condições de salubridade ambiental em dez comunidades rurais dos principais municípios do Alto Paraopeba por intermédio da aplicação do Índice de Salubridade Ambiental específico para o meio rural (ISA-CR). A relevância deste estudo deve-se ao fato de que a grande maioria das comunidades rurais do Brasil é caracterizada por infraestrutura bastante precária, nas quais, verifica-se com bastante frequência, a ausência de abastecimento de água tratada, falta de coleta de resíduos sólidos, e inexistência de sistemas de esgotamento sanitário, que aliado a outros fatores provocam uma série de problemas relacionados à salubridade ambiental. No entanto, apesar do reconhecimento de toda esta realidade, não se verifica na literatura técnica sobre o assunto, nem nos órgãos públicos uma massa crítica de dados sistematizados a respeito das condições de saúde ambiental das comunidades rurais brasileiras, o que dificulta o diagnóstico destas condições, bem como a implementação de políticas públicas que promovam a melhoria das condições de vida destas localidades.

**PALAVRAS-CHAVE:** Índices, Comunidades rurais, Salubridade ambiental, Saneamento ambiental, Indicadores.

### INTRODUÇÃO

De acordo com os dados obtidos pelo IBGE (2006) em uma pesquisa populacional de abrangência nacional a população brasileira é predominantemente urbana, totalizando 81,23% da população. Destes habitantes, 89,3% são abastecidos pela rede geral, 7,6% obtém água através de poços artesianos e 3,3% tem outra forma de abastecimento.

Enquanto isso, a população rural conta somente com 17,8% de abastecimento executado por concessionárias, enquanto 56,4% deste contingente utilizam poços ou nascentes (a maioria sem nenhum controle de qualidade) e 25,8% obtém água de outra maneira, proporcionando maiores riscos à saúde. Com relação ao esgotamento sanitário, a situação torna-se ainda mais crítica, pois a mesma pesquisa constatou que, 53,8% das moradias da área urbana tinham esgotamento sanitário ligado a rede geral e 37,6% eram atendidas por fossas sépticas e 3,1% despejam as águas servidas de outra forma.

O cenário encontrado no meio rural apresenta números que impressionam pela negatividade, somente 3,1% das residências são ligadas a rede coletora de esgoto, enquanto 49,3% da população escoa seus dejetos através de fossas sépticas, as quais em grande parte, são construídas sem nenhuma técnica ou cuidados básicos de proteção ao meio ambiente. Paralelamente a isso, ainda tem-se 10% de habitantes do meio rural utilizando outra forma de esgotamento sanitário (valas a céu aberto, despejo em cursos d'água) e 37,6% das casas sem banheiro.

A partir do contexto descrito, e ciente de que de acordo com DIAS 2003 o estado de saúde de uma população está relacionado às condições materiais e sociais do ambiente no qual está população está inserida. Constata-se que estes ambientes favoráveis à proliferação de doenças infecto parasitárias ocorrem com grande frequência em áreas ocupadas informalmente para habitação e por populações de baixa renda, o que é característico das





comunidades rurais do país, nas quais a carência ou precariedade dos serviços de saneamento ambiental compromete a salubridade do meio.

Contudo, apesar do reconhecimento do problema existem poucas pesquisas no Brasil que procuram aprofundar e quantificar esta realidade, bem como avaliar as condições de vida de suas populações e dos fatores que causam estas desigualdades. Para preencher esta lacuna, é necessário desenvolver estudos que tratem estas questões de forma que seja possível definir políticas públicas voltadas para a realidade destas áreas, identificando as prioridades de intervenção pública, o que pode ser quantificado por intermédio de índices. No entanto, não são encontrados dados sistematizados a respeito das condições de saúde ambiental das comunidades rurais brasileiras, o que impossibilita o diagnóstico e a implementação de políticas públicas que promovam a melhoria das condições de vida destas localidades.

Diante deste cenário, o ISA (Índice de Salubridade Ambiental) é um instrumento de grande importância, pois consegue sintetizar em valores absolutos, as condições de saneamento e salubridade ambiental de uma cidade, bairro ou comunidade. Este índice agrega, em seu modelo matemático, vários indicadores os quais estão relacionados ao abastecimento de água, ao esgotamento sanitário, aos resíduos sólidos, ao controle de vetores, aos recursos hídricos e ao nível socioeconômico.

Através do cálculo deste índice podemos inferir a situação de salubridade ambiental de um município, bairro ou comunidade e a partir disso direcionar políticas públicas de melhoria das condições de vida da população. As faixas de pontuação que determinam a situação de salubridade estão expressas na tabela abaixo:

Tabela 1: Situação de Salubridade por Faixas de Pontuação

| Situação de Salubridade | Pontuação |
|-------------------------|-----------|
| Insalubre               | 0 - 25    |
| Baixa Salubridade       | 26 - 50   |
| Média Salubridade       | 51 – 75   |
| Salubre                 | 76 - 100  |

No entanto, é importante ressaltar que cada indicador é subdividido em vários subindicadores cada um com uma metodologia própria de cálculo, abrangência e definição.

#### **MATERIAIS E MÉTODOS**

Caracterização da área de estudo

O Alto Paraopeba é uma região que abrange os municípios de Conselheiro Lafaiete, Ouro Branco, Congonhas, Entre Rios de Minas, Belo Vale, Jeceaba e São Brás do Suaçuí, e possui uma população aproximada de 238.172 habitantes, encontrada na porção central do estado de Minas Gerais. A economia da região é fundamentada em uma intensa atividade mineradora, a qual se encontra atrelada à siderurgia, atividades que notadamente aumentam a geração de emprego e renda, mas causam impactos significativos ao meio ambiente.





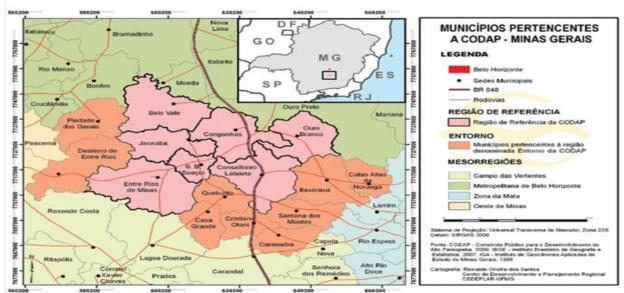



Figura 1: Mapa da região do Alto Paraopeba com seus principais municípios

Para avaliar a salubridade ambiental em comunidades rurais, através da aplicação do Índice de Salubridade Ambiental (ISA-CR) escolheu-se como objeto de estudo cinco municípios que estão inseridos na região do Alto Paraopeba, a saber: Belo Vale, Congonhas, Conselheiro Lafaiete, Entre Rios de Minas e Ouro Branco.

Em cada município foram estudadas duas comunidades, escolhidas mediante debates com lideranças rurais do município e agentes do poder público. A escolha das comunidades ocorreu em função destas apresentarem características fundamentais para o estudo, dentre as quais podemos citar: presença de associação comunitária, condições mínimas de saneamento básico, maior vocação agrícola, distância da sede do município, uma população mínima que constitua um núcleo urbano com a presença de casas adensadas, escola, estabelecimentos comerciais, e oferta de serviços públicos básicos, tais como – educação e saúde.

A partir das características descritas foram contempladas as seguintes comunidades: Castro e Capela dos Coelhos no município de Entre Rios de Minas, Olaria e Cristais em Ouro Branco, Buarque de Macedo e Almeidas em Conselheiro Lafaiete, Joaquim Murtinho e Alto Maranhão na cidade de Congonhas, e Noiva do Cordeiro e Boa Morte no município de Belo Vale.

Utilizando como referencial teórico os trabalhos de sociologia rural (Ribeiro, Galizoni e Silvestre, 2002 e 2003 e Galizoni 2000) foram entrevistadas 10% das famílias residentes, as quais foram escolhidas através de critérios combinados, dentre os quais os autores relatam que os quesitos de maior importância na escolha das famílias a serem pesquisadas são: áreas agrícolas de maior e menor tamanho e faixa etária média do casal nuclear, tamanho e composição da família e tempo de moradia na comunidade.

Respeitando os critérios de escolha de famílias definidos procedeu-se a coleta de dados, a qual ocorreu por meio da aplicação de questionários. Foram visitados 450 domicílios, 60 propriedades no município de Congonhas (25 em Joaquim Murtinho e 35 na localidade de Alto Maranhão), 130 domicílios na cidade de Ouro Branco (80 na comunidade de Olaria e 50 em Cristais), 140 casas no município de Conselheiro Lafaiete (85 na comunidade de Buarque de Macedo e 55 na localidade de Almeidas), 60 casas no município de Entre Rios de Minas (30 na comunidade de Castro e 30 na localidade de Capela dos Coelhos) e 60 propriedades rurais no município de Belo Vale (30 na comunidade de Boa Morte e 30 na localidade de Noiva do Cordeiro).

Foram entrevistados todos os moradores a partir de 12 anos de idade, totalizando 1785 pessoas, 912 mulheres e 873 homens. Todas as casas pesquisadas foram marcadas com GPS. A execução do trabalho de campo foi feita por 4 entrevistadores, todos estudantes do curso de Engenharia Ambiental submetidos a treinamento prévio.





Concomitantemente à aplicação do questionário, as propriedades também eram percorridas em seus anexos, objetivando a verificação da presença de vestígios de roedores e insetos, bem como da ocorrência de instalações zootécnicas próximas à moradia e de embalagens de agrotóxicos descartadas inadequadamente. Paralelamente a isso, as crianças residentes tinham a sua altura e a sua massa quantificadas para verificação de parâmetros de segurança alimentar.

Com o objetivo de analisar parâmetros de qualidade da água que são fundamentais para a determinação da salubridade ambiental, foram coletadas amostras de água dos cinco principais mananciais que atravessavam cada localidade e de 10% das casas visitadas. Estas amostras foram encaminhadas para análise de presença dos agrotóxicos que estão contemplados na Portaria 518/MS, e também para a verificação de coliformes termotolerantes.

O modelo de índice de salubridade ambiental aplicado foi o ISA-CR, específico para comunidades rurais, e possui a formulação descrita a seguir, na qual cada indicador é subdividido em vários subindicadores e representam o percentual de casas da amostra que apresentaram aquela característica intrínseca do subindicador:

#### ISA/CR = 0,15 IAB+0,20 IES+0,10 IRS+0,15 ICM+0,15 ICV+0,15 ISAM+0,10 ISE, em que:

IAB \_ Indicador de abastecimento de água

IES = Indicador de esgotos sanitários

IRS = Indicador de resíduos sólidos

ICM \_ Indicador de condições de moradia

ICV = Indicador de controle de vetores

ISAM - Indicador de saúde ambiental

ISE = Indicador socioeconômico

É importante ressaltar que cada indicador é subdividido em vários subindicadores e representam o percentual de casas da amostra que apresentaram aquela característica intrínseca do subindicador.

Tabela 2: Indicadores e Subindicadores do ISA/CR

| Indicador                               | Subindic. | Definição e forma de aferição                                                  |  |  |  |  |  |
|-----------------------------------------|-----------|--------------------------------------------------------------------------------|--|--|--|--|--|
| Abastecimento de água                   | IAPF      | % de casas atendidas com abastecimento por poços freáticos                     |  |  |  |  |  |
|                                         | IQAR      | % de casas que não apresentam coliformes                                       |  |  |  |  |  |
|                                         | ICAG      | % de cursos d'água da comunidade sem contaminação por agrotóxicos              |  |  |  |  |  |
| Esgotamento sanitário                   | IEFS      | % de casas que apresentam de fossas sépticas                                   |  |  |  |  |  |
|                                         | IDAS      | % de casas com destinação adequada das águas servidas                          |  |  |  |  |  |
| Resíduos sólidos                        | IDRS      | % de casas com destinação adequada de R.S.                                     |  |  |  |  |  |
|                                         | IDAE      | % de casas com destinação adequada de embalagens de agrotóxicos                |  |  |  |  |  |
|                                         | IPA       | % de casas com piso adequado                                                   |  |  |  |  |  |
| Condições de moradia                    | IPAR      | % de casas com parede adequada                                                 |  |  |  |  |  |
|                                         | ICA       | % de casas com cobertura adequada                                              |  |  |  |  |  |
|                                         | IEB       | % de casas que apresentam vaso e chuveiro                                      |  |  |  |  |  |
|                                         | IAM       | % de casas que apresentam relação área/morador adequada                        |  |  |  |  |  |
|                                         | IER       | % de casas que possuem energia elétrica                                        |  |  |  |  |  |
|                                         | IEP       | % de trabalhadores sem sintomas de exposição a pesticidas                      |  |  |  |  |  |
|                                         | ISA       | % de casas que não apresentam subnutrição                                      |  |  |  |  |  |
| Saúde ambiental                         | IPP       | % de casas que não apresentaram parasitoses no semestre                        |  |  |  |  |  |
|                                         | IDS       | % de casas que não apresentaram doenças relacionadas ao saneamento no semestre |  |  |  |  |  |
|                                         | IDR       | % de casas que não apresentaram doenças respiratórias no semestre              |  |  |  |  |  |
| Controle de vetores e<br>Socioeconômico | IPR       | % de casas sem a presença de vestígios de roedores                             |  |  |  |  |  |
|                                         | IPM       | % de casas com instalações zootécnicas afastadas da sede                       |  |  |  |  |  |
|                                         | IOZ       | % de casas sem a incidência de leptospirose, brucelose e raiva                 |  |  |  |  |  |
|                                         | IRF       | % de famílias com renda igual ou superior a 1/2 SM por pessoa.                 |  |  |  |  |  |
|                                         | IGE       | % de famílias em que o chefe de família tenha 1º grau completo                 |  |  |  |  |  |





## **RESULTADOS E DISCUSSÃO**

Após a aplicação do modelo de ISA/CR obtiveram-se os seguintes resultados:

Tabela 3: Resultado dos Indicadores e Subindicadores do ISA/CR nas comunidades rurais de

Congonhas, Ouro Branco, Conselheiro Lafaiete, Entre Rios de Minas e Belo Vale – MG

|              | Congonhas, Ouro Branco, Conselheiro Lafaiete, Entre Rios de Minas e Belo Vale – MG |                |                  |        |          |                 |         |        |                   |              |                   |
|--------------|------------------------------------------------------------------------------------|----------------|------------------|--------|----------|-----------------|---------|--------|-------------------|--------------|-------------------|
| Ind.         | Sub<br>ind                                                                         | J.<br>Murtinho | Alto<br>Maranhão | Olaria | Cristais | B. de<br>Macedo | Almeida | Castro | Cap. do<br>Coelho | Boa<br>Morte | N. do<br>Cordeiro |
| IAB          | IAPF                                                                               | 76             | 55               | 70     | 30       | 65              | 48      | 46     | 65                | 42           | 48                |
|              | IQAR                                                                               | 82             | 67               | 80     | 50       | 50              | 47      | 42     | 58                | 46           | 50                |
|              | ICAG                                                                               | 80             | 80               | 80     | 60       | 80              | 60      | 80     | 100               | 80           | 80                |
| IES -        | IEFS                                                                               | 65             | 48               | 68     | 53       | 64              | 68      | 45     | 61                | 57           | 54                |
|              | IDAS                                                                               | 58             | 54               | 46     | 37       | 58              | 51      | 42     | 51                | 40           | 42                |
| IRS -        | IDRS                                                                               | 57             | 52               | 58     | 42       | 52              | 54      | 45     | 59                | 44           | 46                |
|              | IDAE                                                                               | 94             | 78               | 90     | 64       | 78              | 62      | 89     | 92                | 70           | 68                |
| ICM -        | IPA                                                                                | 62             | 54               | 51     | 40       | 56              | 53      | 52     | 64                | 43           | 45                |
|              | IPAr                                                                               | 57             | 51               | 47     | 35       | 57              | 48      | 41     | 52                | 38           | 40                |
|              | ICA                                                                                | 71             | 59               | 58     | 45       | 59              | 56      | 53     | 56                | 42           | 47                |
|              | IEB                                                                                | 86             | 78               | 85     | 70       | 82              | 77      | 67     | 78                | 65           | 72                |
|              | IAM                                                                                | 68             | 60               | 67     | 52       | 55              | 58      | 60     | 58                | 55           | 58                |
|              | IER                                                                                | 93             | 85               | 95     | 90       | 90              | 85      | 83     | 90                | 95           | 90                |
| ISAM         | IEP                                                                                | 90             | 82               | 83     | 65       | 72              | 64      | 80     | 95                | 67           | 63                |
|              | ISA                                                                                | 86             | 78               | 88     | 62       | 85              | 78      | 68     | 80                | 64           | 60                |
|              | IPP                                                                                | 67             | 60               | 57     | 34       | 64              | 53      | 45     | 55                | 38           | 40                |
|              | IDS                                                                                | 61             | 58               | 56     | 35       | 61              | 48      | 51     | 53                | 40           | 36                |
|              | IDR                                                                                | 69             | 64               | 84     | 64       | 69              | 64      | 68     | 74                | 60           | 62                |
| ICV e<br>ISE | IPR                                                                                | 38             | 47               | 51     | 35       | 48              | 44      | 42     | 49                | 38           | 40                |
|              | IPM                                                                                | 86             | 72               | 60     | 43       | 53              | 48      | 62     | 78                | 40           | 45                |
|              | IOZ                                                                                | 87             | 75               | 83     | 67       | 62              | 73      | 78     | 85                | 62           | 65                |
|              | IRF                                                                                | 83             | 71               | 78     | 57       | 74              | 64      | 53     | 81                | 55           | 58                |
|              | IGE                                                                                | 58             | 54               | 64     | 38       | 58              | 52      | 47     | 54                | 35           | 40                |
| TOTAL        |                                                                                    | 72             | 63               | 69     | 49       | 63              | 58      | 55     | 67                | 48           | 51                |





Verifica-se após a aplicação do ISA, que as condições de salubridade ambiental nas comunidades rurais estudadas em geral são razoáveis. As comunidades que apresentam as maiores pontuações são Joaquim Murtinho (Congonhas), Olaria (Ouro Branco) e Capela dos Coelhos (Entre Rios de Minas). No entanto, estas localidades apresentam estes valores devido a fatores diferentes, pois possuem poucas características em comum.

A comunidade de Joaquim Murtinho apresenta uma economia pouco voltada para a agricultura, no entanto verifica-se uma intervenção da Prefeitura na localidade, devido a ser uma comunidade populosa, localizada em relação às margens da BR-040, constata-se muitos habitantes trabalhando em atividades de prestação de serviços e um melhor nível de renda e escolaridade. Aliado a isso, a localidade conta com uma associação comunitária proativa, o que facilita o acesso a obras de saneamento básico, isto fica comprovado através da construção de fossas sépticas na comunidade, bem como da perfuração de poços freáticos que fazem o abastecimento de água. A comunidade de Olaria apresentou estes números devido a uma série de quesitos, que se iniciam pelo fato de ser uma comunidade bem populosa, próxima à sede municipal, o que permite muitos habitantes trabalhando na cidade proporcionando um melhor nível de renda e escolaridade.

A localidade conta com uma associação comunitária atuante, o que facilita o acesso a obras de saneamento básico, através da construção de poços freáticos e de fossas sépticas pela prefeitura municipal. Por fim, a localidade de Capela dos Coelhos, é uma comunidade mais distante da sede municipal, no entanto verifica-se uma intensa atividade agrícola na mesma, com uma agricultura intensiva e solos de boa fertilidade a comunidade apresenta boa geração de renda, que propicia casas de boa qualidade, que aliada a uma boa atuação da prefeitura na área educacional e ambiental, haja visto que Entre Rios de Minas é a única cidade dentre as pesquisadas que possui uma coleta seletiva de lixo efetiva.

As comunidades com piores índices de salubridade ambiental são Cristais (Ouro Branco) e Boa Morte e Noiva do Cordeiro (Belo Vale). Os motivos de tanta inferioridade verificados nas três comunidades estão relacionados a uma base econômica sustentada em uma agricultura de subsistência. Apresentando uma topografia acidentada e solos de baixa fertilidade natural, verifica-se em grande parte das propriedades rurais a pecuária de leite ou corte ou o plantio de eucaliptos, uma atividade que sabidamente exige pouca mão de obra e com isso geração de emprego e renda fica comprometida. Sabidamente, piores condições de renda causam condições precárias de moradia, aliado a isso, verifica-se ainda um baixo percentual de abastecimento de água e esgotos, fatores que contribuem para a propagação de doenças e provocam condições de saúde ambiental preocupantes.

### **CONCLUSÕES**

A análise comparativa das comunidades permitiu constatar que o Joaquim Murtinho (Congonhas) é aquela que possui melhores condições de salubridade ambiental, o que ocorre devido a ser uma comunidade populosa e também pelo fato de que muitos habitantes trabalham em atividades de prestação de serviços o que colabora no nível de renda e escolaridade. Aliado a isso, a localidade conta com uma associação comunitária proativa, o que facilita o acesso a obras de saneamento básico.

As comunidades de Cristais (Ouro Branco), Boa Morte e Noiva do Cordeiro (Belo Vale) apresentaram as piores condições de salubridade ambiental, e os motivos disso já foram discutidos. Contudo, aliado às piores condições de renda, que sabidamente provocam péssimas condições de moradia, têm-se um descaso do poder público o qual proporciona um baixo percentual de abastecimento de água e coleta de esgotos, fatores que contribuem para a propagação de doenças e percentuais reduzidos de salubridade ambiental.

Os resultados obtidos neste trabalho demonstram que o ISA/CR pode ser utilizado como instrumento de gestão socioambiental, pois a aplicação deste permite a constatação de qual é o problema, em qual comunidade está presente e ainda com qual intensidade está ocorrendo, demonstrando o que seria necessário fazer para a obtenção de um nível de salubridade considerado ideal. A partir disso, pode-se concluir que as comunidades mais carentes e insalubres, devem ser priorizadas com investimentos em: construção de fossas sépticas, construção de poços freáticos e rede de distribuição de água, controle do uso de agrotóxicos e monitoramento dos corpos d'água.





## REFERÊNCIAS BIBLIOGRÁFICAS

- 1. DIAS, M. C. **Índice de Salubridade Ambiental em Áreas de Ocupação Espontânea: Estudo de caso em Salvador, Bahia**. 2003. 171f. Dissertação (Mestrado em Engenharia Ambiental Urbana) Escola Politécnica, Universidade Federal da Bahia, Salvador, 2003.
- 2. GALIZONI, F. M. A. **Terra Construída família, trabalho, ambiente e Migrações no Alto Jequitinhonha, Minas Gerais**. Dissertação de mestrado, FFLCH/USP, 2000.157p.
- 3. IBGE: **Mapeamento do Saneamento Básico no País** PNSA 2005. Nota técnica 7p. Secretaria de Comunicação Social março 2006. Matéria disponível online através do site: www.ibge.gov.br/home/presidência/noticias Acesso em: 12/2/2012.
- 4. LIBÂNIO, Paulo Augusto Cunha *et al.* A dimensão da qualidade de água: Avaliação da relação entre indicadores sociais, de disponibilidade hídrica, de saneamento e de saúde pública. Artigo técnico Rev. Engenharia sanitária e ambiental n.219, vol.10-n3, jul./set 2005, p.219 -228.
- 5. LOPES, V. C.; LIBÂNIO, M. **Proposição de um Índice de Qualidade de Estações de Tratamento de Água (IQETA).** Revista Engenharia Sanitária e Ambiental, v.10, n.4, p.324-334, Rio de Janeiro, dezembro 2005.
- 6. MAGALHÃES, J.A.P.; CORDEIRO NETTO, O.M.; NASCIMENTO, N.O. **Os Indicadores como instrumentos potenciais de gestão das águas no atual contexto legal-institucional do Brasil Resultados de um painel de especialistas**. Revista Brasileira de Recursos Hídricos RBRH, v. 8, n. 4, p. 49-67, out/dez. 2003.
- 7. MENEZES, G. O. **Aplicação do Índice de Salubridade Ambiental em comunidades carentes e sua comparação com comunidades padrão: Instrumento para planos de gestão municipal.** 203f. Dissertação (mestrado) Universidade Federal de Ouro Preto, Mestrado em Engenharia Ambiental. Ouro Preto Minas Gerais, 2007.
- 8. MINISTÉRIO DAS CIDADES **Caderno de Saneamento Básico.** 104p. Publicado em out. 2004. Disponível para download em: <a href="http://www.cidades.gov.br">http://www.cidades.gov.br</a>. Acesso em: 20/05/2008.
- 9. NAHAS, M. I. P.. Banco de Metodologias de Sistemas de Indicadores. In: BRASIL, Ministério das Cidades. 2ª Conferência das Cidades: Política Nacional de Desenvolvimento Urbano, Desenvolvimento do Índice de Qualidade de Vida Urbana Brasil, Ministério das Cidades, 2005 (Disponível em CDROM).
- 10. OLIVEIRA, C. L. de. **Adaptação do ISA, Indicador de Salubridade Ambiental ao Município de Toledo, Paraná**. Dissertação (Mestrado em Engenharia de Produção) Programa de Pós-Graduação em Engenharia de Produção. Universidade Federal de Santa Catarina, Florianópolis, 2003. Disponível em: teses. <a href="https://www.eps.ufsc.br/defesa/pdf/7684.pdf">www.eps.ufsc.br/defesa/pdf/7684.pdf</a>. Acesso em: 05 ago. de 2008.
- 11. RIBEIRO, E. M.; GALIZONI, F. M.; SILVESTRE, L. H. A. Comunidades rurais e recursos comuns nas chapadas do Alto Jequitinhonha, Minas Gerais. Encontro Brasileiro de Estudos da População Ouro Preto, 2002) e ao XLI Congresso da Sociedade Brasileiro de Economia e Sociologia Rural (Juiz de Fora, 2003).
- 12. VICQ, R. F. C. Desenvolvimento do **Índice de Salubridade Ambiental (ISA) para comunidades rurais e sua aplicação e análise nas comunidades de Ouro Branco-MG**. 185 p. Dissertação de Mestrado em Engenharia Ambiental Universidade Federal de Ouro Preto, Minas Gerais, 2010.