MIX DE INVESTIMENTOS COMO MECANISMO DE MINIMIZAR CUSTOS NA GESTÃO ADMINISTRATIVA E FINANCEIRA: UM ESTUDO DO SUPLEMENTO SOLVER

Marcus Antônio Croce¹

RESUMO

O campo da gestão administrativa e financeira abrange vários conhecimentos que são aplicados no interior de uma empresa e dentre eles a minimização de custos, que é um fator fundamental para os resultados prospectivos. O trabalho presente então tem o objetivo de demonstrar como é possível através de um suplemento denominado *Solver* da planilha eletrônica Excel minimizar o custo de investimentos empresariais. A metodologia aplicada nesse trabalho se baseou em fontes bibliográficas e demonstrações disponíveis expostas no meio digital (internet). O resultado alcançado mostrou que é possível aplicar o suplemento *Solver* em várias situações gerando resultados significativos na redução de valores orçados aumentando assim o fluxo de caixa empresarial.

Palavras-chave: Minimização. Custos. Solver. Investimento.

Introdução

A maximização de lucros e a minimização de custos são fatores os quais todos os empresários ou empreendedores buscam a fim de manter seu ramo de produção em uma posição destacada e de conforto no mercado.

A pesquisa presente então foca na minimização de custos demonstrando como através dos recursos oferecidos nos dias atuais pela informática é possível concretizar reduções orçamentárias em grande escala.

O recurso que será exposto nesse trabalho é o *Solver*, um suplemento existente no programa Excel que, dadas as condições ou apresentados os dados de investimento para análise o investidor tem um leque de opções a escolher. Tal suplemento sempre direciona para o resultado ótimo, ou seja, o melhor possível. Conforme aponta Gerson Lachtermacher:

¹ Graduado em História pela Universidade Federal de Juiz de Fora (UFJF), Mestre em História Social pela Universidade Federal Fluminense (UFF) e Doutor em Economia pela Universidade Federal de Minas Gerais (UFMG). Professor Titular no Departamento de Engenharia e Administração da Faculdade Santa Rita - FaSaR onde também é Coordenador do Curso de Administração.

(...) Modelos Computacionais que poderão ser utilizados em sistemas de apoio à decisão. Por Modelos Computacionais entendemos um coniunto de relacões matemáticas е hipóteses lógicas. implementadas em um computador de forma a representar um problema real na tomada de decisão. (...) Com o aprimoramento da tecnologia de banco de dados (...) um número cada vez maior de empresas e tomadores de decisão começou a optar pela segunda forma de tomadas de decisão, isto é, através de elaboração de modelos para auxiliar esse processo. (LACHTERMARCHER, 2004, p. 03).

Percebe-se que Lachtermacher aponta a necessidade de se buscar novas ferramentas em tomadas de decisão por parte dos gestores administrativos. Corroborando suas palavras, os autores Castanha e Castro se manifestam com o seguinte pensamento:

Na vida do Administrador, existe uma quase obsessão dentro das organizações: operar com o menor custo. Paralelo a isso, o Administrador também persegue nas empresas o melhor lucro (...) ele se depara em seu cotidiano com questões que envolvem limitações de insumos, de capacidade e de tantos outros recursos; ainda mais nos tempos modernos! (CASTANHA; CASTRO, 2009, p. 08)

Buscou-se nesse estudo então mostrar como o gestor ou administrador de uma empresa exercendo sua gestão nos campos administrativo e financeiro pode aplicar o uso dessa ferramenta localizado na planilha eletrônica do programa Excel para atingir o patamar de menores custos e ganhos reais nos investimentos empresariais. As fontes bibliográficas de autores como Castanha e Castro (2009), Lachtermacher (2007), Crespo (2009), Assaf Neto (2012) dentre outros proporcionam o entendimento e a demonstração de resultados positivos para atingir o objetivo central desse trabalho: a minimização de custos em investimentos.

Desenvolvimento

Para compreendermos a aplicação do suplemento *Solver* em uma análise de investimentos será exposto um estudo de caso hipotético. Nesse exemplo é demonstrada toda uma situação na qual, segue-se passo a passo a execução do processo de aplicação do *Solver* na planilha eletrônica Excel.

Os autores Castanha e Castro (2009) elaboraram um problema no qual a empresa *Productoring* Ltda. tem o projeto de construir um prédio e sua construção foi orçada em R\$900.000,00.

Na situação exposta, a empresa tem esse capital disponível, porém resolve juntamente com seu departamento administrativo e financeiro analisar como planejar um investimento com esse capital a fim de minimizar o custo da obra.

A empreiteira estimou que a obra tenha uma duração de oito meses, sendo que dessa forma divide o pagamento dos R\$900.000,00 em três parcelas:

(...) a primeira depois do segundo mês do início das obras, a segunda depois do quinto mês e uma última depois da conclusão do oitavo mês. Os valores são respectivamente R\$200.000,00, R\$300.000,00 e R\$400.000,00. O problema da empresa é determinar qual o *Portfólio*² ideal de investimentos a ser utilizado para gerar um caixa a fim de honrar seus compromissos com a construtora. (CASTANHA; CASTRO, 2009, p. 72)

Supondo que as opções de investimento que a empresa tem para aplicar esse capital em uma rede bancária sejam:

Aplicação	Disponível em início dos meses	Duração	Rendimento ao Final do Período			
А	1,2,3,4,5,6,7,8	1	1,5%			
В	1,2,5,7	2	3,5%			
С	1	8	10,5%			

Tabela 1: Dados do Problema de Mix de Investimentos.

Fonte: CASTANHA;CASTRO, 2009 p. 72

² Portfólio representa a composição de uma carteira de investimentos (CASTANHA E CASTRO, 2009 p. 72)

Para melhor entendimento da tabela, no campo a que se refere duração, a aplicação "A" terá um rendimento mensal, ou seja, 1,5% ao mês, a aplicação "B" bimestral, 3,5% ao bimestre e a aplicação "C" o capital ficará retido oito meses e terá um retorno 10,5% de juros.

A tomada de decisão para a escolha do melhor investimento nessas condições será apontada pelo suplemento *Solver* e para iniciar o processo monta-se o seguinte *layout* na planilha eletrônica Excel:

	Início Inse	rir Layout	da Página	Fórmulas	a Dados	Revisão	e Exibição							
	Cal	ibri 🔹	11 - A	∧ ∧ =	= =	»	Quebrar Texto Automa	ticamente	Geral	•	155			P [
Col	ar 🦪 🔳	IS-	- 0.	<u>A</u> · =			Mesclar e Centralizar 🔹		30 % 000 500 500	,00 Form ⇒,0 Cond	atação F icional * com	ormatar Estilos de 10 Tabela * Célula *	Inserir	Excluir For
rea de	Transf 🖻	Font	te	G.		Alinha	mento	5	Número	G.	E	stilo		Células
	N8	- (9	f_{x}											
A	В	С	D	E	F	G	н	1	J	K	L	М	N	0
							Minimização		Recursos (R\$)			0		
-			Môc 1	Môc D	Môc 2	Mâc A	Môr F	Mâc 6	Môr 7	Mêc R	Mâcio			
	Variávois	Ap A1	-1	1 015	wies 5	wes 4	wies 5	wes o	Wes 7	wes a	wes 9	0		
	de	Ap. A2	-1	-1	1.015							0		
	Decisão	Ap. A3		-	-1	1.015						0		
		Ap. A4				-1	1,015					0		1
		Ap. A5					-1	1,015				0		
)		Ap. A6						-1	1,015			0		
L		Ap. A7							-1	1,015		0		
2		Ap. A8								-1	1,015	0		
3		Ap. B1	-1		1,035							0		
1		Ap. B2			-1		1,035					0		
5		Ap. B3					-1		1,035			0		
5		Ap. B4							-1		1,035	0		
7		Ap. C1	-1								1,105	0		
3														
2	Doctricãos		MAG 1	Mås 2	Måc 2	148c 4	Mâc 5	Mace	Mår 7	MAR	Mâc Q			
-	lbc	dico	o notes 1	ivies 2	Ivies 3	1VIES 4	ivies 5	ivies o	ivies /	IVIES 8	ivies 9			
2	ms	cinal	-	-	-	-	-	-	-	-	-			
2	rhs	nag	-	-	200	-	-	300	-	-	400			
1	1112	Pa8.	v		200			300			400			

Figura 1: Planilha para resolução do problema de Mix de Investimentos Fonte: CASTANHA;CASTRO, 2009 p. 74.

Explicando de forma mais clara a planilha acima, na coluna "C" verticalmente enumerou-se todas as aplicações possíveis. Na linha "4" foram incluídos os meses referentes ao problema. Na célula "M linha 2" o zero ali presente representa o local onde aparecerá o valor real que a obra custará depois do investimento e nas células "M das linhas 5 à 17" aparecerão os valores das respectivas aplicações. Nas linhas 21 à 23 ficarão os valores das prestações pois elas limitam o problema e tem que serem pagas pontualmente.

Depois de modelar a planilha Excel conforme está exposto na figura 1 digita-se uma série de funções abrangendo os zeros que estão configurados na mesma. Na célula "M linha 2" digita-se:

= M5 + M13 + M17

Tal digitação se refere à soma das três aplicações, pois nota-se que as células "M5", "M13" e "M17" são aonde se inicia as aplicações.

Na planilha, no espaço que tange as células "E5, F6, G7, H8, I9, J10, K11 E L12) coloca-se o valor de 1,015, pois é a taxa de juros que o banco se compromete a remunerar mensalmente (aplicação A).

O valor de 1,015 corresponde também fórmula de matemática financeira para se calcular o montante: M = C (1+i)^N, onde "M" é o Montante, "C" é Capital, "i" é a taxa de juros e "n" o período de aplicação. O valor de 1,015 também corresponde a quantia do valor do capital mais o rendimento de 1,5% do referido mês (ASSAF NETO, 2012; CRESPO, 2009).

O mesmo procedimento é efetivado nas células "F13, H14, J15 e L16" que entrará com valor 1,035 correspondente a aplicação B e também no que compreende a aplicação C será preenchida a célula L17 com o valor de 1,105.

Nas células "D5, E6, F7, G8, H9, I10, J11, K12, D13, F14, H15, J16 E D17" entra-se com o valor "-1", pois os coeficientes negativos representam a saída de caixa para pagamento das prestações à empreiteira.

As células que preenchem de "D21 à L21" se referem aos limites ou restrições dos pagamentos da operação, nelas a digitação feita é digitado zero em todas e depois em cada uma digita-se as seguintes funções:

Célula D21 \rightarrow = SOMARPRODUTO(\$M5:\$M17;D5:D17)

Célula E21 \rightarrow = SOMARPRODUTO(\$M5:\$M17;E5:E17)

Célula F21 \rightarrow = SOMARPRODUTO(\$M5:\$M17;F5:F17)

Célula G21 \rightarrow = SOMARPRODUTO(\$M5:\$M17;G5:G17)

Célula H21 \rightarrow = SOMARPRODUTO(\$M5:\$M17;H5:H17)

Célula I21 \rightarrow = SOMARPRODUTO(\$M5:\$M17;I5:I17)

 $CélulaJD21 \rightarrow = SOMARPRODUTO($M5:$M17;J5:J17)$

Célula KD21 \rightarrow = SOMARPRODUTO(\$M5:\$M17;K5:K17)

Célula L21 \rightarrow = SOMARPRODUTO(\$M5:\$M17;L5:L17)

No que tange as células "D23 A L23" digitamos zero em todas exceto nas seguintes onde serão digitados os valores da parcela a ser paga à empreiteira dando saída de caixa na empresa:

 $F23 \rightarrow =200$ $I23 \rightarrow =300$ $L23 \rightarrow =400$

Executada toda essa modelagem na planilha Excel, utilizaremos agora os recursos do Suplemento *Solver*. Para instalar o suplemento no computador temos que ir no botão *Office* do computador e clicar com o mouse do lado direito a opção "personalizar barra de ferramentas", depois clicar em "suplementos", em seguida no quadro "ir para" e finalmente selecionar o *Solver*.

Para ativá-lo busca-se na barra de ferramentas o item "dados" e o suplemento solver aparecerá na parte superior direita da tela. Abaixo está a janela do *Solver* e as células nele digitadas.

Parâmetros do Solver										
Definir célula de destino: Igual a: <u>M</u> áx N <u>C</u> élulas variáveis:	SM52 SS Iín Valor de: 0		R <u>e</u> solver Fechar							
\$M\$5:\$M\$17 Submeter às restrições: \$D\$21:\$L\$21 = \$D\$23:\$L\$23		Es <u>t</u> imar Adicionar	<u>O</u> pções							
		Alterar Excluir	<u>R</u> edefinir tudo							

Figura 2: Tela do *Solver* para o problema *Mix* de Investimentos Fonte: CASTANHA;CASTRO, 2009 p. 78).

Explicando a digitação na janela do Solver temos:

Definir Célula Destino: digita-se a célula "M2" pois é nela que aparecerá o valor real do custo da obra pós aplicação.

Igual a: escolhemos a opção "Min", pois a análise da situação aqui é minimizar o custo da obra.

Definir as células variáveis: selecionamos as células de "M5 a M17", pois são os resultados das aplicações A, B e C.

Submeter às restrições: selecionamos as células de "D21 a L21" com o sinal de "igual" ás células "D23 a L23"

Clica-se em "Opções" onde selecionamos "presumir modelo linear" e "presumir nãonegativos" conforme figura abaixo:

	Opções do	Solver ×								
Tempo máximo:	100 segundos	ОК								
Iterações:	100	Cancelar								
Precisão:	0,000001	Carregar modelo								
Tolerância:	5 %	<u>S</u> alvar modelo								
Convergência:	0,0001	Aj <u>u</u> da								
✓ Presumir modelo linear Usar escala automática										
Estimativas	Derivadas	Pesquisar								
Tangente	Adiante	Ne <u>w</u> ton								
O Quadrática	O <u>C</u> entral	Conjugado								

Figura 3: Janela de Opções do *Solver* Fonte: elaborada pelo autor.

Concretizados todos esses procedimentos clica-se em "Resolver" na janela do *Solver* e chega-se ao resultado esperado:

4	A B	С	D	E	F	G	Н	- I	J	K	L	М
							Função Objetivo		Recursos (R\$)			817,7280988
			Mês 1	Mês 2	Mês 3	Mês 4	Mês 5	Mês 6	Mês 7	Mês 8	Mês 9	
	Variáveis	Ap. A1	-1	1,015								0
	de	Ap. A2		-1	1,015							0
	Decisão	Ар. АЗ			-1	1,015						0
		Ap. A4				-1	1,015					0
		Ap. A5					-1	1,015				295,5665025
		Ap. A6						-1	1,015			0
		Ap. A7							-1	1,015		0
		Ap. A8								-1	1,015	0
		Ap. B1	-1		1,035							817,7280988
		Ap. B2			-1		1,035					646,3485822
		Ap. B3					-1		1,035			373,4042801
		Ap. B4							-1		1,035	386,47343
		Ap. C1	-1								1,105	0
	Restrições											
	lhs	disp.	-817,728	0	200	0	0	300	0	0	400	
		sinal	=	=	=	=	=	=	=	=	=	
	rhs	pag.	0	0	200	0	0	300	0	0	400	

Ágora – A revista científica da FaSaR – Ano II – nº 02 – Dezembro – 2018

Figura 4: Planilha final com os cálculos do problema de *Mix* de Investimentos Fonte: CASTANHA; CASTRO, 2009 p. 78.

De acordo com a planilha acima, na célula "M" linha 2, está o resultado de quanto a empresa pagará pela obra com o capital investido simultaneamente. A obra que custaria ao caixa da empresa R\$900.000,00 passa a custar R\$817.728,00, gerando assim ao caixa da empresa uma minimização de custo de R\$82.272,00.

A aplicação escolhida foi a aplicação "B" pois apresentava maior taxa de juros que a aplicação "A" que era mensal. Quanto a aplicação "C" não poderia ser escolhida, pois o capital ficaria retido por todo o período impossibilitando assim da empresa efetuar os pagamentos à empreiteira da obra.

Conclusão

O trabalho presente mostrou uma simulação de um evento que pode ser aplicado com ênfase em empresas e ser uma ferramenta fundamental na tomada de decisão empresarial. Como coloca Paulo José de Freitas Filho, a análise administrativa e financeira tem que possuir "a percepção de que o comportamento modelo simulado é muito semelhante ao do sistema real" (FREITAS FILHO, 2008, p. 23).

O exemplo exposto nessa pesquisa mostrou comprovadamente que a aplicação do suplemento *Solver* é uma ferramenta essencial para o gestor dos setores administrativo e financeiro de uma empresa. Percebe-se que ela pode ser aplicada em muitas análises de investimento, tanto na minimização de custos como também na maximização de lucros de uma empresa

A gestão administrativa e financeira ao realizar uma tomada de decisão precisa antes de tudo elaborar uma modelagem da análise em questão e simular os cenários possíveis diante do investimento a ser realizado. O suplemento *Solver*, como vimos no caso explicitado nessa pesquisa oferece os meios para isso.

O problema que serviu como guia nesse trabalho, apontou que através do suplemento *Solver*, é possível em uma situação real, dentro de suas restrições encontrar a solução ótima.

Ágora – A revista científica da FaSaR – Ano II – nº 02 – Dezembro – 2018 **FASAR**

A descoberta de soluções práticas que proporcionam minimização e maximização de resultados de diferentes processos administrativos, como definição de metas e estratégias fazem do suplemento *Solver* mais uma opção nesse cenário de inovações tecnológicas um mecanismo eficiente na busca de melhores resultados operacionais.

REFERÊNCIAS

ASSAF NETO, Alexandre. *Matemática Financeira e suas aplicações.* 12ª Ed. São Paulo: Atlas, 2012..

CASTANHA A. L. B.: CASTRO, E. B. P. *Pesquisa Operacional*. UAB/MEC – Brasília, 2009.

CRESPO, Antônio Arnot. *Matemática Financeira Fácil.* 14a ed. São Paulo: Saraiva, 2009.

FREITAS FILHO, Paulo José de. *Introdução à modelagem e simulação de sistemas.* Florianópolis: Visual Books, 2008.

LACHTERMACHER, G. *Pesquisa Operacional na Tomada de Decisões: modelagem em Excel.* 3. Ed. Rio de Janeiro: Elsevier, 2007.